4  Exercise 1: MNIST in JAX

Open In Colab

Code mostly ported with thanks from DeepMind’s examples.

Using minimal dependencies and pure JAX functions, we train a simple neural network to classify MNIST digits.

Firstly, some data loading functions. JAX can also leverage both TensorFlow and PyTorch data loading capabilites.

import array
import gzip
import os
from os import path
import struct
import urllib.request

import numpy as np


_DATA = "/tmp/jax_example_data/"


def _download(url, filename):
  """Download a url to a file in the JAX data temp directory."""
  if not path.exists(_DATA):
    os.makedirs(_DATA)
  out_file = path.join(_DATA, filename)
  if not path.isfile(out_file):
    urllib.request.urlretrieve(url, out_file)
    print(f"downloaded {url} to {_DATA}")


def _partial_flatten(x):
  """Flatten all but the first dimension of an ndarray."""
  return np.reshape(x, (x.shape[0], -1))


def _one_hot(x, k, dtype=np.float32):
  """Create a one-hot encoding of x of size k."""
  return np.array(x[:, None] == np.arange(k), dtype)


def mnist_raw():
  """Download and parse the raw MNIST dataset."""
  # CVDF mirror of http://yann.lecun.com/exdb/mnist/
  base_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"

  def parse_labels(filename):
    with gzip.open(filename, "rb") as fh:
      _ = struct.unpack(">II", fh.read(8))
      return np.array(array.array("B", fh.read()), dtype=np.uint8)

  def parse_images(filename):
    with gzip.open(filename, "rb") as fh:
      _, num_data, rows, cols = struct.unpack(">IIII", fh.read(16))
      return np.array(array.array("B", fh.read()),
                      dtype=np.uint8).reshape(num_data, rows, cols)

  for filename in ["train-images-idx3-ubyte.gz", "train-labels-idx1-ubyte.gz",
                   "t10k-images-idx3-ubyte.gz", "t10k-labels-idx1-ubyte.gz"]:
    _download(base_url + filename, filename)

  train_images = parse_images(path.join(_DATA, "train-images-idx3-ubyte.gz"))
  train_labels = parse_labels(path.join(_DATA, "train-labels-idx1-ubyte.gz"))
  test_images = parse_images(path.join(_DATA, "t10k-images-idx3-ubyte.gz"))
  test_labels = parse_labels(path.join(_DATA, "t10k-labels-idx1-ubyte.gz"))

  return train_images, train_labels, test_images, test_labels


def mnist(permute_train=False):
  """Download, parse and process MNIST data to unit scale and one-hot labels."""
  train_images, train_labels, test_images, test_labels = mnist_raw()

  train_images = _partial_flatten(train_images) / np.float32(255.)
  test_images = _partial_flatten(test_images) / np.float32(255.)
  train_labels = _one_hot(train_labels, 10)
  test_labels = _one_hot(test_labels, 10)

  if permute_train:
    perm = np.random.RandomState(0).permutation(train_images.shape[0])
    train_images = train_images[perm]
    train_labels = train_labels[perm]

  return train_images, train_labels, test_images, test_labels
# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
A basic MNIST example using Numpy and JAX.
"""

import time

import numpy.random as npr

from jax import jit, grad, random
from jax.scipy.special import logsumexp
import jax.numpy as jnp
from examples import datasets


# TODO: If you could only @jit one of these functions,
# which would be the best candidate?
# Add the @jit decorator to the function of your choice.

def init_random_params(scale, layer_sizes):
    # TODO Initialize a random PRNGKey
    key = pass
    # TODO Split the PRNGKey into two new keys
    key1, key2 = pass
    params = [(scale * random.normal(key1, (m, n)), scale * random.normal(key2, (n,)))
              for m, n in zip(layer_sizes[:-1], layer_sizes[1:])]
    print(params)
    return params


def predict(params, inputs):
  activations = inputs
  for w, b in params[:-1]:
    outputs = jnp.dot(activations, w) + b
    activations = jnp.tanh(outputs)

  final_w, final_b = params[-1]
  logits = jnp.dot(activations, final_w) + final_b
  return logits - logsumexp(logits, axis=1, keepdims=True)

def loss(params, batch):
  inputs, targets = batch
  preds = predict(params, inputs)
  return -jnp.mean(jnp.sum(preds * targets, axis=1))

def accuracy(params, batch):
  inputs, targets = batch
  target_class = jnp.argmax(targets, axis=1)
  predicted_class = jnp.argmax(predict(params, inputs), axis=1)
  return jnp.mean(predicted_class == target_class)


if __name__ == "__main__":
  layer_sizes = [784, 1024, 1024, 10]
  param_scale = 0.1
  step_size = 0.001
  num_epochs = 10
  batch_size = 128

  train_images, train_labels, test_images, test_labels = mnist()
  num_train = train_images.shape[0]
  num_complete_batches, leftover = divmod(num_train, batch_size)
  num_batches = num_complete_batches + bool(leftover)

  def data_stream():
    rng = npr.RandomState(0)
    while True:
      perm = rng.permutation(num_train)
      for i in range(num_batches):
        batch_idx = perm[i * batch_size:(i + 1) * batch_size]
        yield train_images[batch_idx], train_labels[batch_idx]
  batches = data_stream()

  def update(params, batch):
    # TODO: use JAX's transformations to
    # find the gradients of the loss function w.r.t. params, batch
    # Replace `pass` with your code
    grads = pass
    return [(w - step_size * dw, b - step_size * db)
            for (w, b), (dw, db) in zip(params, grads)]

  params = init_random_params(param_scale, layer_sizes)
  for epoch in range(num_epochs):
    start_time = time.time()
    for _ in range(num_batches):
      params = update(params, next(batches))
    epoch_time = time.time() - start_time

    train_acc = accuracy(params, (train_images, train_labels))
    test_acc = accuracy(params, (test_images, test_labels))
    print(f"Epoch {epoch} in {epoch_time:0.2f} sec")
    print(f"Training set accuracy {train_acc}")
    print(f"Test set accuracy {test_acc}")