11  Exercise 1 Solution

Open In Colab

With thanks to DeepMind for code here.

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""A basic MNIST example using Numpy and JAX.

The primary aim here is simplicity and minimal dependencies.
"""

import array
import gzip
import os
from os import path
import struct
import urllib.request

import numpy as np


_DATA = "/tmp/jax_example_data/"


def _download(url, filename):
  """Download a url to a file in the JAX data temp directory."""
  if not path.exists(_DATA):
    os.makedirs(_DATA)
  out_file = path.join(_DATA, filename)
  if not path.isfile(out_file):
    urllib.request.urlretrieve(url, out_file)
    print(f"downloaded {url} to {_DATA}")


def _partial_flatten(x):
  """Flatten all but the first dimension of an ndarray."""
  return np.reshape(x, (x.shape[0], -1))


def _one_hot(x, k, dtype=np.float32):
  """Create a one-hot encoding of x of size k."""
  return np.array(x[:, None] == np.arange(k), dtype)


def mnist_raw():
  """Download and parse the raw MNIST dataset."""
  # CVDF mirror of http://yann.lecun.com/exdb/mnist/
  base_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"

  def parse_labels(filename):
    with gzip.open(filename, "rb") as fh:
      _ = struct.unpack(">II", fh.read(8))
      return np.array(array.array("B", fh.read()), dtype=np.uint8)

  def parse_images(filename):
    with gzip.open(filename, "rb") as fh:
      _, num_data, rows, cols = struct.unpack(">IIII", fh.read(16))
      return np.array(array.array("B", fh.read()),
                      dtype=np.uint8).reshape(num_data, rows, cols)

  for filename in ["train-images-idx3-ubyte.gz", "train-labels-idx1-ubyte.gz",
                   "t10k-images-idx3-ubyte.gz", "t10k-labels-idx1-ubyte.gz"]:
    _download(base_url + filename, filename)

  train_images = parse_images(path.join(_DATA, "train-images-idx3-ubyte.gz"))
  train_labels = parse_labels(path.join(_DATA, "train-labels-idx1-ubyte.gz"))
  test_images = parse_images(path.join(_DATA, "t10k-images-idx3-ubyte.gz"))
  test_labels = parse_labels(path.join(_DATA, "t10k-labels-idx1-ubyte.gz"))

  return train_images, train_labels, test_images, test_labels


def mnist(permute_train=False):
  """Download, parse and process MNIST data to unit scale and one-hot labels."""
  train_images, train_labels, test_images, test_labels = mnist_raw()

  train_images = _partial_flatten(train_images) / np.float32(255.)
  test_images = _partial_flatten(test_images) / np.float32(255.)
  train_labels = _one_hot(train_labels, 10)
  test_labels = _one_hot(test_labels, 10)

  if permute_train:
    perm = np.random.RandomState(0).permutation(train_images.shape[0])
    train_images = train_images[perm]
    train_labels = train_labels[perm]

  return train_images, train_labels, test_images, test_labels
# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""A basic MNIST example using Numpy and JAX.

The primary aim here is simplicity and minimal dependencies.
"""


import time

import numpy.random as npr

from jax import jit, grad
from jax.scipy.special import logsumexp
import jax.numpy as jnp
from examples import datasets

def init_random_params(scale, layer_sizes):
    # Solution
    key = random.PRNGKey(0)
    # Split the PRNGKey into two new keys
    key1, key2 = random.split(key, 2)
    params = [(scale * random.normal(key1, (m, n)), scale * random.normal(key2, (n,)))
              for m, n in zip(layer_sizes[:-1], layer_sizes[1:])]
    return params


def predict(params, inputs):
  activations = inputs
  for w, b in params[:-1]:
    outputs = jnp.dot(activations, w) + b
    activations = jnp.tanh(outputs)

  final_w, final_b = params[-1]
  logits = jnp.dot(activations, final_w) + final_b
  return logits - logsumexp(logits, axis=1, keepdims=True)

def loss(params, batch):
  inputs, targets = batch
  preds = predict(params, inputs)
  return -jnp.mean(jnp.sum(preds * targets, axis=1))

def accuracy(params, batch):
  inputs, targets = batch
  target_class = jnp.argmax(targets, axis=1)
  predicted_class = jnp.argmax(predict(params, inputs), axis=1)
  return jnp.mean(predicted_class == target_class)


if __name__ == "__main__":
  layer_sizes = [784, 1024, 1024, 10]
  param_scale = 0.1
  step_size = 0.001
  num_epochs = 10
  batch_size = 128

  train_images, train_labels, test_images, test_labels = mnist()
  num_train = train_images.shape[0]
  num_complete_batches, leftover = divmod(num_train, batch_size)
  num_batches = num_complete_batches + bool(leftover)

  def data_stream():
    rng = npr.RandomState(0)
    while True:
      perm = rng.permutation(num_train)
      for i in range(num_batches):
        batch_idx = perm[i * batch_size:(i + 1) * batch_size]
        yield train_images[batch_idx], train_labels[batch_idx]
  batches = data_stream()

  # Solution
  # jit compiling the update function brings the most benefits;
  # it does the heavy lifting for the training loop and runs
  # many times
  @jit
  def update(params, batch):
    # Solution
    grads = grad(loss)(params, batch)
    return [(w - step_size * dw, b - step_size * db)
            for (w, b), (dw, db) in zip(params, grads)]

  params = init_random_params(param_scale, layer_sizes)
  for epoch in range(num_epochs):
    start_time = time.time()
    for _ in range(num_batches):
      params = update(params, next(batches))
    epoch_time = time.time() - start_time

    train_acc = accuracy(params, (train_images, train_labels))
    test_acc = accuracy(params, (test_images, test_labels))
    print(f"Epoch {epoch} in {epoch_time:0.2f} sec")
    print(f"Training set accuracy {train_acc}")
    print(f"Test set accuracy {test_acc}")